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work with GNM models to investigate
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• Key residues were identified for U1A's
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by snRNA binding.

• U1A is well organized in communities
acting different roles for snRNA
binding and allosteric regulation.
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A B S T R A C T

The allosteric regulation during the binding interactions between small nuclear RNAs (snRNAs) and the asso-
ciated protein factors is critical to the function of spliceosomes in alternative RNA splicing. Although network
models combined with molecular dynamics simulations have shown to be powerful tools for the analysis of
protein allostery, the atomic-level simulations are, however, too expensive and with limited accuracy for the
large-size systems. In this work, we use a residual network model combined with a coarse-grained Gaussian
network model (GNM) to investigate the binding interactions between the snRNA and the human U1A protein
which is a major component of the spliceosomal U1 small nuclear ribonucleoprotein particle, and to identify the
residues that play an important role in the allosteric communication in U1A during this process. We also utilize
the Girvan-Newman method to detect the structural organization in U1A-snRNA recognition and interactions.
Our results reveal that: (Ι) not only the residues at the binding sites that are traditionally considered to play a
major role in U1A-snRNA association, but those residues that are far away from the RNA binding interface
participate in the U1A's allosteric signal transmission induced by the RNA binding; (Π) the structure of U1A
protein is well organized with different communities acting different roles for its RNA binding and allosteric
regulation. The study demonstrates that the combination of the residual network and elastic network models is
an effective and efficient method which can be readily extended to the investigation of the allosteric commu-
nication for other macromolecular interaction systems.
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1. Introduction

The RNA recognition motif (RRM), also known as RNA-binding
domain (RBD), is one of the most abundant protein domains in eu-
karyotes that can undergo large dynamic and activity adaptability by
allosteric regulation when binding to their RNA targets [1,2]. The most
well characterized RRM is the N-terminal RNA-binding domain (RBD1)
of the human U1A protein, one of the major protein components of the
spliceosomal U1 small nuclear ribonucleoprotein (U1 snRNP) particle
[3,4]. This domain can bind with sufficiently high affinity and speci-
ficity to stem-loop II (SL2) of U1 small nuclear RNA (hereinafter re-
ferred to as snRNA and the protein domain as U1A), participating in
pre-mRNA splicing [5,6]. However, currently the effect of snRNA
binding on U1A's dynamics and allosteric communication, and how
U1A's structure is organized for its function are not completely clear.

The structure of U1A bound to snRNA has been determined by X-ray
diffraction analysis at 1.92 Å resolution (Fig. 1 (a) and (b)) [7]. The
U1A is characterized by a β1-αA-β2-β3-αB-β4 sandwich fold that
contains a four-stranded antiparallel β-sheet as the primary RNA-
binding surface flanked by two α-helices on one side. During complex
formation, the snRNA induces U1A conformational changes throughout
the U1A-snRNA interface as well as the C-terminal helix (Helix-C)
which is a little far away from the interface [8]. Before binding, U1A
forms the closed state where the Helix-C covers part of the RNA-binding
surface. Upon binding to RNA, U1A folds into the open form where the
Helix-C is oriented away uncovering the buried area to permit RNA
access (Fig. 1 (c)), and loop1 and loop3 also undergo a structural re-
arrangement with loop3 protruding through the snRNA loop [9].

In recent years, besides experimental studies, theoretical molecular
dynamics (MD) simulations have focused on the relationship between
the binding and conformational changes during their interactions.
Reyes and Kollman carried out MD simulations and site-directed mu-
tagenesis of U1A-snRNA interface residues to examine the origin of the
binding specificity [10]. Utilizing MD simulations, Pitici et al. obtained
the predictions for the structures of the unbound forms of U1A in so-
lution in order to elucidate dynamical aspects of the induced fit upon
RNA binding [11]. Most recently, Guzman et al. adopted a series of MD
simulations to delve whether U1A protein alone is capable of under-
going the conformational dynamics similar to the structural re-
arrangements upon RNA binding [12]. On the experimental side, Law
et al. used a surface plasmon resonance-based biosensor to gain me-
chanistic insight into the role of Helix-C in mediating the interaction of
U1A with RNA [13].

Although the analyses above help to find the U1A's important
structural elements involved in the binding and allosteric transition, the
pathways of allosteric signal transduction favored by the network of
inter-residue contacts and the key residues involved in the allostery
remain poorly understood. MD simulation is a time-consuming method
and it is difficult to investigate the large-scale functional motions of
proteins. To address the issue, different levels of coarse-grained models
have been developed [14,15]. Among them, the elastic network model
(ENM), a harmonic potential-based and cost-effective computational
method, has achieved great success in investigating the function-re-
levant motions in allosteric transitions [16–18] and the allosteric sig-
naling caused by the ligand binding, mutations and their combinations
[19–21]. Our group also utilized ENM-based methods to study the is-
sues involved in the folding and allosteric processes of biomolecules
[22–24]. In the conventional ENM model, the biomacromolecule
structure is modelled as a coarse-grained elastic network, where the
node pairs within a given cutoff distance are considered to have in-
teractions which are modelled as a set of Hookean springs with a uni-
form force constant [25]. Later, Yang et al. proposed a parameter-free
ENM (pfENM), in which all the node pairs are considered to be inter-
acting with each other with the strength being inversely proportional to
their square distance. Compared with the conventional cutoff-based
ENM model, the pfENM model is not only simpler, i.e. without any
parameters, but also can yield even better predictions for crystal-
lographic B-factors and functionally correlated motions due to the
consideration of long-range interactions [26].

In addition to the network models based on the intra-protein in-
teractions [27,28], the graph-theoretical approach (complex network
model) has also been successfully used in the analyses of allosteric
communications in protein systems [29–31] and the predictions of hub
residues in allosteric signal transduction [32–34]. Some network
parameters such as degree, closeness and betweenness centrality, can
provide an estimate of the importance of the nodes in allosteric com-
munication pathways [35,36]. The characteristic path length (CPL) is a
very important parameter and Del Sol et al. found that the residues that
greatly affect the CPL values upon removal are usually critical to al-
losteric signal transmission [37]. Furthermore, the behavior of the
nodes that are highly correlated and within close physical proximity
can be analyzed in terms of community structure [38]. The community
analysis can identify relatively independent communities of residues
that behave as semi-rigid bodies when propagating allosteric signals in
biological systems [39]. Usually, the signaling strength between nodes
is expressed as an edge weight, and thus much effort has been put into

Fig. 1. Complex structure of U1A with snRNA (PDB code: 1URN) (a) and the secondary structure of snRNA (b). U1A forms a β1-αA-β2-β3-αB-β4 sandwich fold with
β1 (Thr11-Asn15), β2 (Ile40-Val45), β3 (Ala55-Phe59), β4 (Arg83-Tyr86) colored yellow, αA (Lys23-Phe37) and αB (Val62-Met72) colored pink. Helix-N and Helix-
C are in blue, and loops (loop1-loop6) in cyan. (c). Superimposition between the open state of RNA-bound U1A and the closed state of apo-U1A structures.
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the determination of the edge weight in order to explore the allosteric
regulation effectively. Bhattacharyya et al. first used energy between
nodes as a weight to examine the paths of allosteric communication in
Pyrrolysyl-tRNA Synthetase [40]. VanWart et al. then utilized the mo-
tional correlation between nodes as a weight to explore the residue
component contributions to dynamical network models of allostery
[41]. Until recently, McClendon et al. computed the mutual information
of Cartesian coordinates between nodes as a weight to identify inter-
residue correlated motions in protein residue network [42]. Despite of
the successes, the above approaches have to be performed on the basis
of MD simulations to capture the conformational ensemble, which is
often found too expensive and time-consuming.

Enlightened by the above approaches, in this work, we analyze the
dynamic behavior of the binding interactions between the human U1A
protein and snRNA using the parameter-free Gaussian network model
pfGNM. To explore the key residues and the structural organization in
the allosteric communication, we further construct the weighted re-
sidual network model with the weights coming from the inter-residue
movement correlations computed based on the slowest motional modes
from pfGNM, not from MD method. This work builds a new and ef-
fective avenue for investigating protein-RNA binding and allosteric
dynamics.

2. Materials and methods

2.1. Parameter-free Gaussian network model

Different from the conventional cutoff-based Gaussian network
model (GNM), the parameter-free GNM (pfGNM) model [26,43] adopts
a distance-dependent spring constant set. In constructing the pfGNM
model of protein-RNA complex, we model the molecular system as a
coarse-grained and elastic network by replacing one residue with one
node (Cα atom for protein residue, and P atom for RNA nucleotide [44])
and imposing a harmonic potential with the inverse-square distance
dependent spring force constants between all pairs of nodes. Thus, the
residue pairs that are far apart have weaker interactions than those
pairs that are close to each other. By this simplification, the total in-
ternal potential energy of the network of N nodes can be written as

=H R E R1
2

[ ( ) ]T
(1)

where γ is the harmonic force coefficient of the springs, the column
vector ∆R represents the fluctuation of the N nodes, the superscript T
denotes the transpose, E is the unitary matrix, ⊗ is the matrix direct
product and Γ is the N×N symmetric Kirchhoff matrix, the elements of
which are described as
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where rij is the distance between the ith and jth nodes.
The mean-square fluctuation of each node and the fluctuation cross-

correlation between different nodes are in proportion to the diagonal
and off-diagonal elements of the pseudoinverse of the Kirchhoff matrix.
The inverse of the Kirchhoff matrix can be decomposed as

= U U1 1 T (3)

where U is an orthogonal matrix whose columns ui(1≤ i≤N)are the
eigenvectors of Γ, and Λ is the diagonal matrix of the eigenvalues λi of
Γ. The fluctuation cross-correlation between the ith and jth nodes and
the mean-square fluctuation of the ith node can be written as
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where kB is the Boltzmann constant, T is the absolute temperature, and
the meaning of γ is the same as eq. (1). The cross-correlation and mean-
square fluctuation associated with the kth mode can be given by
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According to the Debye-Waller theory, the B-factor of the ith node
can be calculated with the expression

= < >B R R8 /3i i i
2 (8)

The cross-correlation between residue fluctuations is normalized as
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This value ranges from −1 to 1. Positive values depict correlated
motions occurring along the same direction and the negative represent
correlated motions along the opposite direction. The higher the abso-
lute value is, the more the two residues are correlated. The value Cij=0
means that the motions of residues are completely uncorrelated.

2.2. Complex network model

Based on the protein-RNA complex structure, a weighted complex
network model is constructed with residues as nodes (Cα and P atoms
stand for amino acid and nucleotide residues, respectively) and contacts
as edges. Here, the contact is defined as the pairs of nodes within a
cutoff distance. For node pairs in protein, RNA and their interface, the
cutoff distances are set to 7.0, 13.0 and 10.0 Å respectively. The weight
wij of an edge between nodes i and j is the probability of information
transfer across that edge [45] as measured by their fluctuation cross-
correlation Cij computed based on the slowest motional modes from
pfGNM model (in order to eliminate functionally unrelated high-fre-
quency noise)

=w Clog(| |)ij ij (10)

The length dij of a path between distant nodes i and j is the sum of
the edge weighs between the consecutive nodes (k, l) along the path

=d wij
kl

kl
(11)

The shortest path among all the paths between two nodes is found
by the Floyd-Warshall algorithm that compares all possible path lengths
between the two nodes. The characteristic path length (CPL) is defined
as the average length of the shortest paths between all pairs of nodes in
a network

=
>
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N
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N

ij
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where N and Np are the numbers of nodes and node pairs, respectively,
and dij is the shortest path length between nodes i and j. The con-
tribution of a node k to the information communication within a net-
work can be measured with the change of the CPL after removing node
k from the network. The change of CPL (△CPLk= CPLk - CPL) was
previously used to predict the important residues in allosteric com-
munication within proteins [37]. A Z-score analysis provides a measure
for the relative change in CPL

=Z score CPL CPL
k

k k

(13)

where △CPLk is the change of CPL after removal of node k, CPLk is
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the change ΔCPLk averaged over all the nodes, and σ is the corre-
sponding standard deviation.

Additionally, the dynamic network of nodes and edges contains
substructures or communities of nodes that are more densely inter-
connected to each other than to other nodes in the network. The
community structure is identified by using the Girvan-Newman algo-
rithm [38] which uses a top-down approach to iteratively remove the
edge with the highest betweenness and recalculate the betweenness of
all remaining edges until none of the edges remains. The betweenness

of a node i is defined to be the fraction of the shortest paths between
pairs of nodes in a network that pass through the node i. The normal-
ized betweenness is given as

=
<

b
N N

g i
g

2
( 1)

( )
i

j k
j i k

N
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where gjk is the number of shortest paths between nodes j and k, and gjk
(i) is the number of shortest paths from node j to k that pass through

Fig. 2. Comparison between the experimental (blue line) and computed (red line) B-factors of P and Cα atoms of U1A-snRNA complex. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Fluctuation cross-correlations calculated
using the dominant ten lowest motional modes for
U1A-snRNA complex. As shown in the color bar, the
blue regions indicate negative correlations and the
green-yellow-red regions present positive correla-
tions. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web
version of this article.)
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node i. Betweenness is a measure of the centrality of a node in a net-
work, and in some sense can be regarded as a measure of the influence
that a node has over the spread of information through the network.

Another two basic parameters are the degree of a node and the
clustering coefficient of a whole network. The former is defined as the
number of its direct connections to other nodes, which is a centrality
measure of the local connectivity in the interaction network. The latter,
clustering coefficient CC is a measure of the probability for the neigh-
bors of a node to be also neighbors of each other, which can be com-
puted by

=
=

CC
N

e
k k

1 2
( 1)i

N
i

i i1 (15)

where ki is the number of neighbors of node i, and ei is the total number
of edges actually connecting the neighbors of node i.

2.3. U1A-snRNA complex system

The crystal structure of U1A-snRNA with Protein Data Bank (PDB)
code 1URN [7] is used to construct the pfGNM model, and the weighted
residue complex network model of the complex structure.

3. Results and discussion

3.1. Theoretical B factors of residues in the pfGNM model of complex
structure

The U1A-snRNA complex structure was modeled as the pfGNM
model with each residue simplified as a node, and the interaction be-
tween any two nodes simulated as a spring of the inverse-square dis-
tance dependent force constant (see 2. MATERIALS AND METHODS).
To test the feasibility of the model, we compared the theoretical and
experimental B-factors of the residues. As the absolute value of the
spring coefficient γ does not affect the relative size of residue fluctua-
tions, it has no influence on the correlation between the calculated and
experimental B-factors, and the cross-correlations between residue
fluctuations [26]. Therefore, γ=1 was adopted here. The correlation
coefficient between the calculated and experimental B-factors is 0.651,
as shown in Fig. 2, indicating that this simplified model is constructed
reasonably and can be applied to the following analyses about cross-
correlations between residue fluctuations.

3.2. Movement coupling between residues

Cross-correlations between residue fluctuations reflect the move-
ment coupling and interactions between residues. For U1A-snRNA
complex, we calculated the cross-correlations based on eq. (9). Fig. 3
gives the results obtained based on the first ten slowest motional modes
accounting for more than 50% of the residue fluctuation. From Fig. 3,
snRNA loop is found to be strongly positively correlated with U1A
loop3, while modestly positively correlated with U1A loop1 and Helix
C, which is in accordance with the crystal structure where many hy-
drogen bonding and hydrophobic interactions form for the former while
only some contacts and several hydrogen-bonding interactions do
through side chains for the latter [7,13,46–49]. The four β sheets

involved in the extensive contacts with RNA have relatively strong
positive correlations with each other due to the formation of a hydro-
phobic core within them, and meanwhile have more or less positive
correlations with Helix-C [47].

However, in the snRNA-free U1A, the correlations among the four β
sheets and between them and Helix-C (see Fig. S1) are evidently weaker
than the corresponding ones in the snRNA-bound U1A, and are even
negative for the correlations of β1-β3, β2-β3, β1-Helix-C, β2-Helix-C.
The results hint that RNA binding strengthens the interactions among β
sheets and mediates local motional cooperativity between β-sheets and
Helix-C, consistent with the observation made earlier [50–52].

3.3. Small-world characteristics of residue network and local hub residues

We employed a complex network analysis for U1A-snRNA system,
which treats the complex as a network of interacting residue pairs with
the edge weights coming from the cross-correlations between residue
fluctuations obtained from pfGNM model. As the slow motional modes
represent the large-scale collective motions associated with protein
functions [53], the first ten slowest motional modes accounting for
more than 50% of the residue fluctuation were utilized to produce edge
weights. Then, the characteristic path length CPL (eq. (12)) and the
clustering coefficient CC (eq. (15)) were calculated, as shown in
Table 1. For comparison, the results for the regular and random net-
works with the same size as the U1A-snRNA residue network are also
shown in Table 1. From Table 1, the CPL value of U1A-snRNA network
is of the same order as that of the random one, and far less than that of
the regular one. For the clustering coefficient CC, the former is seven
times more than the middle one and less than the latter. Thus, based on
the small value in the characteristic path length and the relatively large
value in the clustering coefficient, we conclude that the U1A-snRNA
residue network has small-world properties, in agreement with the
amino acid network of proteins [54,55].

The residues with relatively large node degrees are often defined as
hubs which are as well as hypothesized to act as a central backbone for
information transduction, allowing for rapid integration and dis-
semination of the information [56–58]. To reveal the critical role
played by the hub residues in information flow within the structure, we
analyzed the position distributions of the hubs (~10% of all residues)
with high degrees of connectivity exceeding the threshold of eleven (see
Table S1). As shown in Fig. 4, these 12 hubs are mostly located at U1A
four-stranded antiparallel β-sheets (Thr11, Ile12, Tyr13 and Asn15 lo-
cated at β1, Ile58 and Phe59 situated at β3, Tyr86 in β4), two in loop3
(Met51, Arg52), one in loop5 (Met82), one in loop6 (Ala87) and one in
αB (Ala65). Most of these hubs are dispersed across the U1A-snRNA
binding interface, forming a series of hydrogen bonds such as Arg52-A6
and Tyr86-C10, hydrophobic interactions such as Tyr13-C10 and
Ala87-C10, as well as electrostatic interactions such as Arg52-G16 [47].
These hubs mostly appear on the interface, suggesting that they prob-
ably mediate the allosteric signal transduction between U1A and
snRNA.

3.4. Identification of key residues by characteristic path length change

It is conceivable that the residues that play an important role in
receiving and propagating the allosteric signal should be central in the
interaction network, lying on the shortest pathways between most re-
sidue pairs in the protein. Thus, we calculated the Z-score of the change
in characteristic path length when one node and its links are removed
from the network, which is a measure of its effect on communication
within the entire network, as shown in Fig. 5 (a). From this figure, there
are 11 residue clusters whose central resides (Ala2, Asn9, Arg52, Gly53,
Ser71, Gln73, Ile93, Ile94, Ala95, Lys96 and Met97) are of higher Z-
score values (Z-scorek≥1.5). For clarity, the central residues are
mapped on the tertiary structure of the complex system, as shown in
Fig. 5 (b). In accordance to the locations of these clusters in the

Table 1
Comparison in network parameters of U1A-snRNA residue network with the
same-sized regular and random networks.

Network parameters U1A-snRNA residue
network

Regular
network

Random network

CPL 3.82 7.41 2.47
CC 0.56 0.88 0.07
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structure, they can be classified into two groups which are located re-
spectively at Helix-N (clusters 1–2), Helix-C (clusters 7–11) regions, and
loop regions (clusters 3–6). The functional information of them will be
discussed in detail below by their comparison with the available ex-
perimental and theoretical data.

For the first group of residue clusters 1–2 and 7–11 at Helix-N and
Helix-C regions, a little far away from the binding interface, they are of
considerable flexibility (see Fig. 2), especially for the Helix-C which has a
large conformational change or reorientation upon snRNA binding. In
cluster 1, the residue Arg7 (adjacent to central residue Ala2 in space) at
Helix-N is positively charged and its mutation leads to a loss of structure
stability, as well as affects the binding kinetics slightly [59]. Previous
research has showed that positively charged residues could have sig-
nificant influence on RNA binding even if their distances from RNA reach

11 Å [60]. In cluster 2, the mutation of Thr11 at Helix-N to Ile could
result in its hydrogen bond loss with Ser91 in Helix-C, which affects
indirectly Ser91-A11 hydrogen bonding interaction [61], blocking signal
communication among snRNA, Helix-C and Helix-N. As for Helix-C, the
experimental and theoretical studies have demonstrated its significant
contribution to RNA binding affinity [13,62]. Also, the position of Helix-
C in U1A-snRNA structure is determined mostly by hydrophobic inter-
actions of its residues Ile93, Ile94 and Met97 (in clusters 7, 8 and 11)
with His10 (in cluster 2) at Helix-N [61]. The truncation, removal or
disruption of the Helix-C will result in a considerable loss (sometimes
100 fold) of complex stability [13], suggesting that its reorientation is
probably for strengthening the interaction of U1A with snRNA, con-
sistent with Law's point of view [13]. Many identified key residues at
Helix-C combined with the experimental data indicate that Helix-C is a

Fig. 4. Hub residues with high degrees of connectivity exceeding the threshold of eleven. (a) Degree values of these hub residues. (b) Positions of these hub nodes in
U1A-snRNA complex structure.

Fig. 5. Identified key residue clusters. (a) Z-score value of the change in the characteristic path length (△CPL) when one node and its links are removed from the
U1A-snRNA structure network. The clusters of key residues with relatively high Z-score values (Z-scorek≥1.5) are marked by the numbers 1–11. (b) Locations of the
central residues for 11 clusters of key residues.
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critical part that bears the allosteric signal transmission, which facilitates
achieving global conformation movements and ensuring normal pro-
gression of snRNA binding.

For the key residue clusters at loop regions, clusters 3 and 4 (cen-
tered at Arg52 and Gly53) are located at U1A loop3, cluster 5 (centered
at Ser71) situated at αB very adjacent to loop5, and cluster 6 (centered
at Gln73) at loop5. For U1A loop3, it protrudes through the RNA loop
and plays vital roles for the induced fit as U1A anchors to RNA bases
and for the high stability of the complex structure [47]. Thus, loop3 is
important for the allosteric transition and the identified key residue
clusters 3 and 4 are located in this part. Many experimental and theo-
retical studies have found that residue Arg52 (in cluster 3) plays a
critical role for U1A-snRNA binding [10,47,52]. The mutations of the
adjacent residue Gln54 account for a severe loss of RNA binding affinity
[63]. The substitution of residue Gly53 (in cluster 4) with either Ala or
Val can decompose the conformation of loop3, which is destructive for
the induced fit in the allosteric communication between U1A loop3 and
snRNA, leading to a dramatic decrease in RNA binding affinity and
specificity [1]. Additionally, from the network point of view, Amitai
et al. have shown that the key residues involved in the allosteric in-
formation communication tend to have high centrality in the structure
[32]. Surprisingly, we also found that Arg52 and Gly53 have a higher
betweenness centrality value (ranked 12th and 6th in all 96 residues,
respectively, shown in Table S2), and the former is also with a high
degree value (see Fig. 4), which suggests that these positions are crucial
for the allosteric information transmission in the structure.

Finally, for the residue clusters 5 and 6 (centered at Ser71 and
Gln73 respectively), we have not yet found the report on their im-
portance for allosteric communications. However, they are strategically
located between U1A β3 and β4 and connect two RNA binding regions
like a bridge [7], indicating that they possibly belong to the allosteric
information transfer station.

In fact, the residues with relatively high Z-scores commonly have a
significant effect on the binding affinity or specificity between U1A and
snRNA, which has been verified by experimental data. For instance,
among these identified crucial residues, Agr52 and Gln53 have the
largest Z-score values. Mutation of Arg52 completely abolishes the
U1A-RNA binding [7]. Also, the RNA-binding assays show that the af-
finity between them is reduced by nearly 1.6×104 fold when Gly53 is
replaced by Val [1]. For other key residues with similar Z-scores, mu-
tational analyses reveal the magnitudes of the reduction in the binding
affinity are relatively modest with about 10-fold magnitude [13,59].

3.5. Community analyses of U1A-snRNA system

To further reveal how U1A-snRNA structure is organized in the re-
cognition and interaction, we applied the Girvan-Newman algorithm to
partition U1A-snRNA complex into structurally contiguous commu-
nities. The algorithm splits the residue network of U1A-snRNA into four
communities as shown in Fig. S2. The nodes in the same community are
adjacent in structure but can be distant in sequence. Of the four com-
munities, there are two communities including a combination of snRNA
and U1A protein, and two communities containing only protein re-
sidues.

The red community with the most nodes is the largest one, and also
has the most connections to other three ones. It consists of U1A Helix-N,
Helix-C, part of αB, and most part of the four-stranded β-sheets. There
are mainly hydrophobic interactions among residues in this commu-
nity. For instance, the Helix-C is restricted by the interactions between
its three hydrophobic core residues Ile93, Ile94 and Met97 and residues
His10 (in Helix-N), Leu41 (in β2), Ile58 (in β3) and Val62 (in αB) in this
community. Besides, there are important stacking interactions such as
the interaction between Tyr13 (in β1) and Phe56 (in β3). The previous
study has shown that the removal of the aromatic side chain of Tyr13 is
very disruptive, leading to a dramatic decrease in structure stability
[63]. The cyan community includes the whole αA, part of loop1 as well

as snRNA 5'stem, and this community contains the most positively
charged residues (all positively charged residues Lys20 and Lys22 in
loop1 and Lys23, Lys27, Lys28, His31 and Arg36 in αA). When RNA
binding occurs, since the backbone phosphates are negatively charged,
the positively charged residues are essential to attract snRNA and an-
chor it in correct position of U1A protein. The previous experiments
have shown that the mutations of Lys20, Lys22 and Lys23 can result in
a significant reduction of the electrostatic interactions with snRNA
[59]. The orange community contains snRNA loop and 3'stem, and U1A
loop3 and part of loop1, representing the primary U1A-snRNA re-
cognition site. The importance of the orange community is emphasized
by its incorporation of the critical U1A loop3 region which protrudes
through the snRNA loop and locks the conformation of the complex
with the hydrogen bonds formed between Arg52 (in loop3) with RNA
A6 and G16 [47]. Tang and Nilsson have pointed out that U1A loop3
plays a critical role in the induced fit between U1A and snRNA [47].
The yellow community bridges β4 and αB regions and mainly com-
prises of U1A loop5, the end part of αB and the beginning part of β4.
Our analyses on the characteristic pathway length found that the
identified key residues (Ser71 in αB and Gln73 in loop5) in this com-
munity are of a higher betweenness centrality value (ranked 7th and 1st
in all 96 residues respectively, see Table S2), which suggests that it may
act as a transfer station for allosteric information flow within the
complex structure.

Based on the analyses above, we identified four community struc-
tures which play different roles within the complex structure. The red
one is closely related to the stability of complex structure. The cyan one
is important to the electronic attraction between U1A and snRNA. The
orange is critical to the induced fit between the two molecules. And the
yellow possibly acts as a transfer station of information communication
within the complex structure.

4. Conclusions

We extended the parameter-free Gaussian network model (pfGNM)
to the exploration of the effect of snRNA binding on the dynamics of
U1A protein domain which is one of the major components of the
spliceosomal U1 small nuclear ribonucleoprotein particle. The results
reveal that snRNA binding strengthens the interactions among U1A β-
sheets, and between the main binding surface β-sheets and Helix-C.

Furtherly, the complex network model with the edge weights
coming from the cross-correlations between residue fluctuations ob-
tained from pfGNM was utilized to examine the residues critical for the
allosteric signal communication. The residue network model of U1A-
snRNA complex structure is of small-world properties. The residues
with high degrees of connectivity are mostly situated at the binding
surface, implying their critical roles in information flow transmission
within the structure. By removing one node one time, we simulated the
attack on the complex network to identify the key residues in the al-
losteric communication process. The identified key residues are found
in two groups according to their locations in the structure: [1] the re-
sidues at Helix-N and Helix-C with high flexibility and far away from
the interface, which are thermodynamically coupled with the binding
of RNA, and are important for the long-range allosteric signal trans-
mission; [2] the residues at loop regions, which are mostly positively
charged and highly flexible, and largely contribute to the induced fit
and the high binding affinity between U1A and snRNA. Finally, we
explored how the complex structure is organized using the community
detecting algorithm. The structure is divided into four communities
with different functional roles of the stability of complex structure,
electronic attraction, induced fit and information transfer station in
response to snRNA binding, which is found by combining previous
experimental and theoretical data.

Considering the relatively good consistence of our results with ex-
perimental data, we believe that taking the cross-correlations between
residue fluctuations in slow motional modes from pfGNM as the edge
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weights in residual network model is a novel and efficient approach to
analyze the allosteric signal communication and organization of the
structure. The results can help reveal the relationship between mole-
cular topological structures and their binding and allosteric dynamics.
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